Improved Pseudorandom Generators for Combinatorial Rectangles
نویسنده
چکیده
We construct a pseudorandom generator which uses O(log m + log d + log 3=2 1==) bits and approximates the volume of any combinatorial rectangle in f1; : : : ; mg d to within error. O(log m + log d + log 2 1==) bits. For a subclass of rectangles with at most t log 1== nontriv-ial dimensions and each dimension being an interval, we also give a pseudorandom generator using O(log log d + log 1== log 1=2 t log 1==) bits, which again improves the previous upper bound O(log log d + log 1== log t log 1==)
منابع مشابه
Discrepancy Sets and Pseudorandom Generators for Combinatorial Rectangles
A common subproblem of DNF approximate counting and derandomizing RL is the discrepancy problem for combinatorial rectangles. We explicitly construct a poly(n)-size sample space that approximates the volume of any combinatorial rectangle in [n] to within o(1) error (improving on the constructions of [EGLNV92]). The construction extends the techniques of [LLSZ95] for the analogous hitting set pr...
متن کاملDiscrepancy Sets and Pseudorandom Generators for Combinatorical Rectangles
A common subproblem of $DNF$ approximate counting and derandomizing $RL$ is the discrepancy problem for combinatorial rectangles. We explicitly construct a $poly(n)$size sample space that approximates the volume of any combinatorial rectangle in $[n]^n$ to within $o(1)$ error (improving on the constructions of [EGLNV92]). The construction extends the techniques of [LLSZ95] for the analogous hit...
متن کاملOptimal Hitting Sets for Combinatorial Shapes
We consider the problem of constructing explicit Hitting sets for Combinatorial Shapes, a class of statistical tests first studied by Gopalan, Meka, Reingold, and Zuckerman (STOC 2011). These generalize many well-studied classes of tests, including symmetric functions and combinatorial rectangles. Generalizing results of Linial, Luby, Saks, and Zuckerman (Combinatorica 1997) and Rabani and Shpi...
متن کاملAperiodic pseudorandom number generators based on infinite words
In this paper we study how certain families of aperiodic infinite words can be used to produce aperiodic pseudorandom number generators (PRNGs) with good statistical behavior. We introduce the well distributed occurrences (WELLDOC) combinatorial property for infinite words, which guarantees absence of the lattice structure defect in related pseudorandom number generators. An infinite word u on ...
متن کاملPseudorandom Generators in Propositional Proof Complexity
We call a pseudorandom generator Gn : {0, 1}n → {0, 1}m hard for a propositional proof system P if P can not efficiently prove the (properly encoded) statement Gn(x1, . . . , xn) 6= b for any string b ∈ {0, 1}m. We consider a variety of “combinatorial” pseudorandom generators inspired by the Nisan-Wigderson generator on the one hand, and by the construction of Tseitin tautologies on the other. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Combinatorica
دوره 22 شماره
صفحات -
تاریخ انتشار 1998